Skip to main content

Safety Through Aerial Robotics

The DroneSensor Series utilizes all-weather commercial heavy-lift UAVs with industrial-grade material designed for ease of use and quick deployment for radiation and chemical detection. The all-carbon-fiber frame construction gives the copter strength while making it incredibly lightweight. These UAVs are manufactured in a NATO country thus satisfying various U.S. government agencies’ security concerns.


The commercial-grade brushless motors are highly efficient robust and offer hundreds of hours of worry-free flying. The DroneRad NEO is an octocopter with eight engines for redundancy and the ZOE quadcopter both have a folding frame for easy transporting. Other features include GPS position hold, automatic return to home, intelligent flight modes, and optional waypoint capability.

All components are housed in a weatherproof canopy and both UVs are capable of flying in wind, rain, and snow. Wireless video downlink and flight telemetry overlay provide real-time data to the ground station with data archive and retrieval for historical comparisons, if required.

For More Information: https://usnuclearcorp.com/ 

Comments

Popular posts from this blog

Autonomous Airborne Radiation Monitoring system

Complete UAV radiation mapping drone system US Nuclear UAV radiation mapping drone offers an accurate, affordable and versatile low-altitude aerial radiation detection vehicle which is an out of the box solution for anyone that needs to examine an area or patrol a location for radiation levels or contamination. The system gives you real-time location, measurement and mapping of radioactivity with isotope identification. UAV radiation and mapping drone: what do you get 1. Aerial unmanned drone A Small Unmanned Aircraft System (SUAS) with an all up weight less than 7.0 kg. This low total mass, coupled with the in-built redundancy of the aerial system represents a low risk of structural damage to buildings and the environment during its operation. This is in line with UK CAA guidelines. The drone has a number of supporting sensor: positioning fixing (Latitude and Longitude) by multi GNSS (GPS and Glonass), number of satellites and height above mean sea level (AMSL); tem...

NGM 202L™ (Gas Monitor)

The NGM 202L monitor continuously measures the volumetric activity of noble gas and tritium in a radioactive effluent gaseous samples. FEATURES: Dynamic gamma radiation compensation Compact and reliable Minimum periodic maintenance DESCRIPTION: The NGM 202L monitor forms part of the RAMSYS™ product line. It has been developed to continuously sample the volumetric activity of noble gas and tritium in a radioactive effluent gaseous sample. This monitor can operate as a stand alone device or in conjunction with a particulate monitor (ABPM 201™ monitor), iodine monitor (IM 201™ monitor) and with a high range noble gas monitor (NGM 203™ monitor) to form a very wide range monitoring system. For More Information: usnuclearcorp.com

WHY USE AGRICULTURE DRONES? MAIN BENEFITS AND BEST PRACTICES

How drone technology works To gain a better understanding of drones use in agriculture, let’s take a closer look at drone technology. Typically, a drone construction includes propulsion and navigation systems, GPS, sensors and cameras, programmable controllers as well as equipment for automated flights. The technology used for UAV drones for agriculture are built in a way that enables them to capture more accurate information than airplanes and satellites are capable of collecting. Drone-based aggrotech software processes the collected data and delivers it in an easy-to-read format.  All in all, the data collection process in the case of agriculture drones includes four logical steps: 1. Indicating flight parameters:  Outlining and evaluating the surveillance area and uploading GPS info into the drone navigation system. 2. Autonomous flights:  A UAV drone carries out a flight pattern according to the pre-established parameters and collects the required data. 3. Data uploa...